
J. Fluid Mech. (2000), vol. 404, pp. 269–287. Printed in the United Kingdom

c© 2000 Cambridge University Press

269

Instabilities of exact, time-periodic solutions of
the incompressible Euler equations

By J O S E P H A. B I E L L O1, K E N N E T H I. S A L D A N H A2

AND N O R M A N R. L E B O V I T Z 2

1Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
2Department of Mathematics, The University of Chicago, Chicago, IL 60637, USA

(Received 27 May 1999 and in revised form 28 August 1999)

We consider the linear stability of exact, temporally periodic solutions of the Euler
equations of incompressible, inviscid flow in an ellipsoidal domain. The problem of
linear stability is reduced, without approximation, to a hierarchy of finite-dimensional
Floquet problems governing fluid-dynamical perturbations of differing spatial scales
and symmetries. We study two of these Floquet problems in detail, emphasizing
parameter regimes of special physical significance. One of these regimes includes
periodic flows differing only slightly from steady flows. Another includes long-period
flows representing the nonlinear outcome of an instability of steady flows. In both
cases much of the parameter space corresponds to instability, excepting a region
adjacent to the spherical configuration. In the second case, even if the ellipsoid
departs only moderately from a sphere, there are filamentary regions of instability in
the parameter space. We relate this and other features of our results to properties of
reversible and Hamiltonian systems, and compare our results with related studies of
periodic flows.

1. Introduction

In this paper we study the stability of a family of exact, temporally periodic
solutions of the Euler equations governing an inviscid, incompressible fluid. These
equations are

ut + u · ∇u+ ∇p = 0,

∇ · u = 0,

n̂ · u|∂D = 0.

 (1.1)

We consider an ellipsoidal domain D fixed in the inertial frame,

D =

{
x
∣∣ 3∑
i=1

(
xi

ai

)2

6 1

}
.
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These equations possess the ‘simple motion’ solution in the terminology of Poincaré
(1910) for a flow linear in the Cartesian coordinates,

u =


0 −a1

a2

m3

a1

a3

m2

a2

a1

m3 0 −a2

a3

m1

−a3

a1

m2

a3

a2

m1 0

 x, (1.2)

provided the coefficients m1, m2, m3 satisfy the following system of ordinary differential
equations:

I1ṁ1 = (I3 − I2)m2m3, I2ṁ2 = (I1 − I3)m1m3, I3ṁ3 = (I2 − I1)m1m2, (1.3)

where I1 = a2
2 + a2

3, I2 = a2
3 + a2

1, I3 = a2
1 + a2

2. These equations are, except for an
inessential sign change, identical with those governing the dynamics of a rigid body.
Their solutions are well understood. All orbits are periodic and, therefore, for any
choice of initial data, they provide a temporally periodic solution of the equations of
inviscid fluid dynamics, the spatial structure being provided by equation (1.2). Since
the velocity field is linear in the Cartesian coordinates, the motion in question has, at
any instant of time, uniform vorticity, but which varies periodically with time. In this
paper we study the stability of these temporally periodic velocity fields.

Forster & Craik (1996) have undertaken a similar study in the case when the
fluid occupies all of space so that the boundary condition in equation (1.1) can be
ignored. Their method exploits the circumstance that the linearized Euler equations
have solutions in the form of time-dependent plane waves. To apply these results
to the bounded case, one limits the wavenumbers to those that are ‘sufficiently
large’ so that localized wave packets of small wavelength can develop without being
influenced by the boundary. From the standpoint of examining the stability of these
periodic solutions in the bounded domain, that work therefore provides the limit of
disturbances of asymptotically small spatial scale. By contrast, the method employed in
the present paper, while in principle applicable to all spatial scales, is only practicable
for large to moderate spatial scales. These methods are therefore complementary.

Viscosity is neglected in the present paper but in applications to laboratory, plan-
etary or astrophysical flows, its effects need to be considered. The solution (1.2) of
the Euler equations is likewise a solution of the Navier–Stokes equations but fails to
be a solution of the viscous problem because it does not satisfy the no-slip boundary
condition. It is therefore a leading contender for an outer solution of the viscous
problem via boundary-layer theory. Although there has been no boundary-layer anal-
ysis for this problem, the analysis of Roberts & Stewartson (1965), as amended in
Busse (1968), in the analogous problem of flow in a precessing spheroid has confirmed
that the analogous simple motion of Poincaré (1910) (cf. § 4.2) indeed represents an
approximate outer solution for that problem. Motion very much like that described
by the solution (1.2) is found in the laboratory experiments of Gledzer et al. (1974).
Where stability theory is concerned, viscosity damps the elliptic instability in the
short-wave limit. This damping is less effective for the perturbations of large to mod-
erate spatial scale considered here, so these are the inviscid motions most likely to
persist in the presence of viscosity. Even these must be modified by viscosity through
the effect of boundary layers. However, experience with related problems, including
laboratory experiments (cf. Kerswell 1993; Gledzer & Ponomarev 1992; Malkus 1989)
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suggest that, when the inviscid equations predict an inertial instability of sufficiently
large growth rate, the conclusion of instability persists in the presence of viscosity.

A principal physical motivation for the present study derives from studies of the
elliptic instability. This refers to the widespread instability of the planar flow

u = c

(
−a1

a2

x2,
a2

a1

x1, 0

)
. (1.4)

For any choice of the constant c this is an equilibrium solution of the Euler equations
if the cross-sections in the (x1x2)-plane of the domain D are ellipses with semiaxes a1

and a2 (or if the domain is all of space). If a2 = a1 this is a rigid-body rotation and
is stable in most applications where it arises. However, if a2 6= a1, the streamlines are
ellipses, and it is in many cases unstable. In the unbounded case, it is ‘universally’
unstable, which is to say that in the absence of other effects (like rotation, for
example) it is unstable without any qualification (Pierrehumbert 1986; Bayly 1986;
Waleffe 1990). In the bounded case, where a normal-mode analysis can be used, the
various normal modes may or may not predict instability, depending on the domain
(see, for example, Gledzer & Ponomarev 1992 for a review of this problem). In the
cases of ellipsoids or elliptic cylinders, which have been studied in the laboratory, the
aspect ratios are the critical parameters for determining instability for specific normal
modes. It is plausible that if all normal modes are taken into account, and if the fluid
could be considered strictly inviscid, the instability would be universal also in the
case of bounded domains, i.e. would hold irrespective of the axes ratios. Laboratory
experiments do not confirm this picture; there are parameter regions of stability as
well as of instability. These can be related to the theoretically derived instabilities of
normal modes of rather low order (i.e. of moderate to large spatial scales).

Most of the theoretical research on the elliptic instability for bounded domains
has been directed at the linearized stability problem, although there have been a few
efforts in the direction of weakly nonlinear approximations as well (cf. Gledzer &
Ponomarev 1977; Waleffe 1989; Guckenheimer & Mahalov 1992; Knobloch, Mahalov
& Marsden 1994; Lebovitz & Saldanha 1999). Understanding the nature of the non-
linear flow that develops in consequence of the elliptic instability is of considerable
interest both in laboratory and in natural settings. Recently Kerswell (1999) and
Mason & Kerswell (1999) have studied the stability of flows that are near the basic
flow with elliptic streamlines (i.e. similar to (1.4)). Their stability analysis is carried
out for a flow which arises from the saturation of a pair of unstable inertial waves
superposed on the elliptic flow, i.e. they are investigating the secondary instabilities
of the underlying elliptic flow. Their analysis requires the saturation of the primary
instability at a small amplitude. However, it was emphasized in Lebovitz & Saldanha
(1999) that saturation at small amplitude may be an exceptional case: most of the
bifurcations studied there fail to saturate at small amplitude. This complicates finding
the flows from which a secondary flow may bifurcate. The time-periodic solutions of
the Euler equations (1.2) and (1.3) above provide a natural opportunity to realize such
an exact nonlinear development, in the following way. If we supply (1.3) with initial
data (m1, m2, m3) = (0, 0, c), the corresponding velocity field is precisely the steady
elliptic flow (1.4). This is unstable if a3 is intermediate in size between a1 and a2 (since
this makes I3 the intermediate moment of inertia), to perturbations that leave the
velocity field in the simple form given by equation (1.2). The nonlinear outcome of a
perturbation in this class of perturbations is therefore one of the periodic orbits stud-
ied here. Experiments intended to check this seem to confirm it (Gledzer et al. 1974),
at least for the (extremely) short times for which the outcome could be observed. This
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is one of our motivations for studying the stability of these periodic solutions, and it
governs the choice of one of the parameter regimes that we explore.

As Forster & Craik (1996) point out, this problem may be the only one in the
hydrodynamic literature to consider the stability of a three-dimensional, periodic flow
that is not reducible to a steady flow in a rotating frame. However, in the special
case when two semiaxes are equal, it is possible to transform to a frame in which the
motion is steady, and there are then similarities to Poincaré’s solution for a precessing
fluid spheroid. The stability problem for that case has been considered by Kerswell
(1993). We compare the two stability problems.

Our technique is based on the following property of the linear stability problem: it
decomposes into an infinite hierarchy of finite-dimensional problems, each providing
an exact solution of the original stability problem. This in turn is a consequence of
the invariance of spaces of vector polynomials under the linear operator appearing
in the stability problem. The two lowest-degree spaces, of degrees eight and eighteen,
correspond to fluid motions on the scale (roughly) of one-half and one-third the
size of the domain, respectively. These are the ones we investigate in detail in this
paper, although there is no obstacle in principle to considering further systems in the
hierarchy.

The plan of the paper is as follows. In § 2 we describe the parameter space of
periodic solutions, present the linearized equations, and explain the technique for
analysing them. The results of the numerical solutions of the resulting Floquet
problems are presented and interpreted in § 3. There is a discussion of these results
and their relation with previous research in § 4.

2. Formulation
2.1. The unperturbed periodic solutions

We need to parametrize the periodic orbits. There are three semi-axes and three
choices of initial data for the system (1.3), but we do not need six parameters: three
suffice. It is clear from (1.3) that only the ratios of the semi-axes enter into the problem.
Furthermore, permuting the semi-axes ai cyclically and carrying out the same cyclic
permutation on the dynamic variables mi leaves the equations unchanged. Using these
invariances we can choose, without loss of generality, the following ordering of the
semi-axes:

a2 < a1 = 1 < a3. (2.1)

This makes the a1 semi-axis the intermediate one so, if we wish to study the periodic
solutions representing the nonlinear development of the elliptic instability, we consider
perturbations of the steady solution with vorticity in this direction. We now rewrite
(1.3), letting m1 → −a2a3m1/2, m2 → −a3a1m2/2 and m3 → −a1a2m3/2:

ṁ1 = K2
1m2m3, ṁ2 = −K2

2m1m3, ṁ3 = −K2
3m1m2. (2.2)

Here

K1 =

[
2(a2

3 − a2
2)

a2
2 + a2

3

]1/2

, K2 =

[
2(a2

3 − 1)

a2
2(1 + a2

3)

]1/2

, K3 =

[
2(1− a2

2)

a2
3(1 + a2

2)

]1/2

.

Setting m̃i = rmi, with r a constant and rescaling time by τ = t/r leaves the system
unchanged. The scale factor r is chosen implicitly in equations (2.3) below. Rescaling
therefore eliminates two of the original six parameters. We can eliminate one more
by appropriate labelling of orbits, as follows.
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Figure 1. Setting a1 = 1, a2 = 0.85 and a3 = 1.15 we numerically compute a sampling of solutions
of (2.2) for initial conditions along the contour C described in (2.3).

Consider solutions of (2.2). The fixed points, aside from the origin, which do not
interest us, are m1, m2 and m3 where m1 = (m0

1, 0, 0), the other two points being
defined analogously. From the expression (1.2) it is clear that each fixed point of
(2.2) is associated with a steady solution of (1.1). Equation (2.2) has two conserved
quantities, which we choose in the form

Γ 2
1 =

(
m1

K1

)2

+

(
m2

K2

)2

and Γ 2
2 =

(
m1

K1

)2

+

(
m3

K3

)2

.

In the (m1, m2, m3) phase space, the surfaces of constant Γ 2
1 and Γ 2

2 are elliptic cylinders
centred about the m3 and m2 axis respectively. Solutions of the system must lie on
the intersections of these two invariant surfaces, and may be described by the relative
values of Γ1 and Γ2. Setting Γ1 = 0 produces the equilibrium point m3, and setting
Γ2 = 0 produces the equilibrium m2. When Γ1 � Γ2 (i.e. when the elliptic cylinder
about the m3-axis is much thinner than the one about the m2-axis), solutions execute
small oscillations about m3. Analogously, Γ2 � Γ1 produces orbits that execute small
oscillations about m2. Changing the relative values of the Γi smoothly will smoothly
deform these orbits into wider oscillations. This deformation can be carried out
(from either extreme value) up to the critical value Γ1 = Γ2 (i.e. choosing initial
conditions m0

2/K2 = m0
3/K3). At this critical value the two conserved quantities are

not independent in the neighbourhood of the (hyperbolic) fixed point m1, and the
solution produced by the intersection of the invariant surfaces is a separatrix orbit
passing through this point. Figure 1 shows a numerically computed sampling of the
orbits described above. Recall the scale invariance of the dynamical variables; in
particular, choosing r = −1 will produce the qualitatively equivalent orbits in the
other octants, which are not depicted in the figure. Changing the relative values of
Γ1 and Γ2 can be achieved through a single parameterization. In figure 1, consider
the ‘half-longitude’ on the plane m1 = 0 that connects the equilibrium points m2 and
m3. This one-dimensional curve C, which passes through all orbits on the hemisphere,
can be described by a single parameter θ:

m (0) = (0, K2 sin(θ), K3 cos(θ)), 0 6 θ 6 π/2. (2.3)
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At θ = 0 this parameterization sets (Γ1, Γ2) = (0, 1), picking out the equilibrium point
m3, and as θ increases smoothly it varies the relative values of Γ1 and Γ2, ending at
(Γ1, Γ2) = (1, 0) (i.e. at m2) when θ = π/2. The separatrix orbit is crossed at θ = π/4.

To summarize, on the basis of the symmetries of the system (1.3) with respect to the
semi-axes {ai} as well as the dynamic variables {mi}, we obtain all possible periodic
orbits of the system by fixing the ordering of the semi-axes as in (2.1) and considering
orbits produced from initial conditions along the contour C.

2.2. The perturbed problem

Let us suppose that we now have a periodic solution u to Euler’s equation for fluid
flow. Let v be a small perturbation to u. The linearized evolution equation governing
v is

vt + Lv = −∇p, (2.4)

where p now denotes the pressure perturbation and

Lv = u · ∇v + v · ∇u. (2.5)

Consider the action of L on a vector polynomial, by which we mean a vector v for
which each component v1, v2, v3 is a polynomial in the Cartesian coordinates. Denote
by n the maximum of the degrees of the three component polynomials; we shall
refer to this as the degree of v. Since u itself has this form with n = 1, it is obvious
from equation (2.5) that Lv is also a vector polynomial of the same degree. Vector
polynomials of given degree form a finite-dimensional linear space, so this observation
can be restated: L acts invariantly on polynomial spaces of given degree. This
invariance extends to the projection of L onto the linear space defined by div v = 0,
v · n = 0 on the boundary (Lebovitz 1989). This is the underlying reason why the linear
stability problem decomposes exactly into a hierarchy of finite-dimensional problems.

In exploiting this property by expanding the solutions in polynomials, we need
also to impose the remaining conditions that div v = 0 in D and v · n = 0 on ∂D.
However, this can also be achieved by constructing a basis of vector polynomials
{ηi}∞1 satisfying these conditions. Such a basis has been constructed (Lebovitz 1989).
The basis functions of degree one, for example, may be written

η1 =

 0

−a2x3/a3

a3x2/a2

 , η2 =

 a1x3/a3,

0

−a3x1/a1

 , η3 =

 −a1x2/a2

a2x1/a1

0

 . (2.6)

The unperturbed velocity field (1.2) can alternatively be expressed in the form u =∑3
1 mi(t)ηi. The basis is not orthonormal† as given in Lebovitz (1989) but can be

orthonormalized and we shall assume in the discussion below that this has been done.
By the reasoning described above, there exist exact solutions of equation (2.4) in

the form

v(x, t) =
∑

αi(t)ηi(x), (2.7)

where the sum goes over indices belonging to the basis vectors {ηi} of a prescribed
maximal degree. Substitution in equation (2.4) then results in the finite-dimensional
system

dα

dt
+Lα = 0 (2.8)

† We use the standard inner product 〈u, v〉 =
∫
D
u(x) · v(x) dx.
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where the matrix L is defined by

(L)jk = 〈ηj, Lηk〉 (2.9)

and the indices j and k run over the same set as in equation (2.7). Matrices L
obtained in this way are periodic with the period T of the unperturbed orbit, so a
hierarchy of Floquet problems is obtained in this way. We treat in detail the two that
correspond to the lowest polynomial degrees, two and three, which turn out to be of
dimensions eight and eighteen, respectively. The numerical treatment of these Floquet
problems is routine, but has a special feature to which we wish to draw attention.

2.3. Reversibility

The treatment of the Floquet problem proceeds by constructing a Floquet multiplier
matrix M and checking to see whether any eigenvalue has modulus exceeding unity.
In doing this we have found that the eigenvalues come in quartets λ, λ, 1/λ, 1/λ, where
the overbar signifies the complex conjugate. This is the pattern for symplectic maps,
such as one would derive from a canonical, Hamiltonian system, but our systems
are not Hamiltonian.† We find, however, that the periodic differential equations
(2.8) are reversible. This means that there is an operator R with R2 = I such that
RL(t) = −L(−t)R. For the Floquet matrix M this implies that RM = M−1R. This
reversibility suffices to explain the quartet structure for the eigenvalues, since it implies
that whenever λ is an eigenvalue, so is λ−1.

We omit the proof since it is somewhat lengthy and is tangential to our main
purpose.

3. Results
We carry out the numerical computation of the Floquet multipliers for pertur-

bations v expressed by basis functions whose components are quadratic and cubic
polynomials. Since the argument showing the reduction of the problem to finite di-
mensions relied only on the invariance of polynomial spaces of maximal degree under
the action of L, it might be thought that the system arising in the quadratic case
would appear again as a subsystem in the cubic case. However, because of further
symmetries (Lebovitz 1989), terms of even and of odd degrees are uncoupled, and the
two systems we describe here are therefore uncoupled.

The equations (2.2), which produce the unperturbed, periodic solution, require a
choice of the parameters a2, a3, θ. These then determine the operator L, but to define
the matrix L figuring in the Floquet theory, we need to perform the integrations
implicit in the definition (2.9). These, however, can be carried out exactly since the
integrands are polynomials in the Cartesian coordinates. We produce the periodic
matrices L in this way. We then construct the Floquet matrix M(T ) numerically.
The background orbit is unstable if there exists λi, an eigenvalue of M(T ), such that
|λi| > 1. It is related to the growth rate gi by the formula

gi =
ln(|λi|)
T

. (3.1)

For each of the two classes of perturbations, we investigate the stability of two
qualitatively different classes of periodic orbits:

† There are indications (Morrison 1998) that systems derived in this way are generically
non-Hamiltonian even if the underlying system has a Hamiltonian character.
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(a) those executing small oscillations about a nearby equilibrium solution (to test
the robustness of the conclusions of elliptic-instability theory), and

(b) near-separatrix orbits that execute large oscillations with significant excursions
from their initial conditions (representing the exact nonlinear outcome of a small
perturbation of an unstable steady solution).

3.1. Near-equilibrium orbits

Choosing θ = 0+ sets m0 = (0, 0+, 1−) and produces a periodic orbit that is dominated
by the steady solution η3. In the fluid dynamical context, this produces a periodic
velocity field which has vorticity primarily in the x3-direction (we recall that a3 is the
largest semi-axis; we refer to this as the prolate case). On the other hand, θ = (π/2)−
sets m0 = (0, 1−, 0+), producing an orbit dominated by the steady solution η2. In
this case, the vorticity of the periodic solution in the fluid context is primarily in
the x2-direction (a2 is the smallest semi-axis; the oblate case). In our computations
we set θ = 0.02 for the first case and θ = 1.55 for the second. In figure 1, these
are the orbits close to the ‘north pole’ and ‘east pole’ of the ellipsoidal domain,
respectively. We expect the stability characteristics of such orbits to be dominated by
the stability characteristics of the nearby equilibrium solutions. The latter have been
the subject of previous investigations, which are therefore available for comparison.
Our comparisons are with the stability investigation of Lebovitz & Saldanha (1999).

We first set θ = 0+. Figure 2 compares the stability of steady solutions with that of
nearby periodic solutions, for perturbations represented by quadratic and cubic basis
functions. The jagged boundaries in the figure are artifacts of the coarseness of the
mesh over the computational domain.

We see that in the parameter regime adjacent to that of spherical symmetry, the
stability characteristics of the equilibrium solution are well preserved by the nearby
periodic solutions. There is a neighbourhood about spherical symmetry in which the
periodic orbits are stable to the perturbations considered. In the parameter regime
where both the periodic and equilibrium solutions are unstable, the largest eigenvalue
is both of the same order of magnitude in modulus, and of the same complex phase:
in both cases the critical eigenvalue is real.

Farther from the spherical configuration – at the upper parts of the frames shown in
figure 2 – there are significant differences between the equilibrium and periodic orbits.
This is particularly evident with respect to the response to the cubic perturbations
(frame d), but is true as well for the quadratic perturbations (frame c). The upper
right-hand region of this frame now corresponds to unstable periodic orbits. These
instabilities are clearly associated with the time-dependence of the unperturbed flow.

For the cubic perturbations, there is a large augmentation of the unstable region
in parameter space. The kink in the contours running through figure 2(d) indicates
that for the more elliptical figures (intermediate a2 values) a new instability associated
with the periodic solutions acquires a growth rate surpassing that of the instability of
the corresponding equilibrium solutions and persists for highly elongated figures. The
growth rates for the cubic perturbations surpass those for the quadratic perturbations
for highly elongated prolate figures (i.e. large a3 and intermediate values of a2).

Turning to the case θ = (π/2)−, we consider the stability of periodic orbits dom-
inated by the equilibrium η2. Under our ordering, this equilibrium solution rotates
about the minor axis of the ellipsoidal domain. Again, the stability diagrams of the
equilibrium solutions are taken from Lebovitz & Saldanha (1999) and are reproduced
in figure 3.
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Figure 2. Contours of log (MAX[gi]). (a, b) Reproductions of the instabilities of the steady solution
η3 to quadratic and cubic perturbations respectively, computed in Lebovitz & Saldanha (1999). (c, d)
The instabilities of periodic solutions executing small oscillations about the steady solution. The
(right) vertical axis represents a prolate spheroid, with a1 = a2 < a3, and the spherically symmetric
domain occurs at the lower right corner.

Here the periodic orbits tend once again to inherit the instability of the nearby
equilibrium solution (see figure 3). For both quadratic and cubic perturbations, we
also find an additional, narrow region of parameter space to be unstable. This is due
to a strain component of the background flow in a direction perpendicular to that
of the main fluid motion, i.e. the streamlines of the background flow are sheared
normal to themselves. This instability is similar in origin to the inertial instabilities of
Poincaré’s precessing flow, as studied by Kerswell (1993). We discuss this more fully
in § 4.2 below. This is likewise the origin of the narrow band of instabilities seen in the
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Figure 3. Contours of log (MAX[gi]). (a, b) Reproductions of the instabilities of the steady solution
η2 to quadratic and cubic perturbations, respectively. (c, d) The unstable regions for periodic
solutions executing small oscillations about the steady solution, to quadratic and cubic perturbations,
respectively. The (bottom) horizontal axis represents an oblate spheroid (a1 = a3 > a2) domain,
with spherical symmetry occurring at the lower right corner.

upper centre of figure 2(c), and we believe that the additional parametric instabilities
beyond those existing in the steady case have the same origin in some of the other
cases as well, although we have only documented this in the two cases mentioned (see
§ 4.2).

In the region where the instability of the periodic solution is inherited from the
corresponding nearby equilibria, the nature of the instability is likewise inherited: in
this case both critical eigenvalues are complex.
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3.2. Near-separatrix orbits

When a rigid body rotating about its intermediate axis is perturbed slightly, the
ensuing motion takes place on the scale of the entire body, making extremely large,
long-period excursions from the initial position. Regarded as a bifurcation problem,
with parameter a1 passing from the shortest axis (say) to the intermediate axis, it is a
global bifurcation problem: the size of the new (periodic) solution is not limited by
the difference between a1 and its critical value. This likewise describes the periodic
solutions governed by equations (1.2) and (1.3). The second class of orbits that we
examine are precisely these near-separatrix orbits passing near the unstable steady
solution. Such orbits are produced by setting θ ≈ π/4.

We first choose θ just less than π/4, so that the orbit in the (m1m2m3)-space
encloses the m3-axis. The lengths of the periods of the unperturbed solutions increase
as θ → π/4. In the case of quadratic perturbations, we use θ = 0.77. However in
the case of cubic perturbations, which is computationally far more expensive, we
use θ = 0.75 in order to decrease the numerical integrations required to produce
each column of M(T ). For perturbations approximated by quadratic and cubic basis
functions, we find our chosen periodic orbit to be unstable in most of the parameter
space. Figure 4 shows the computation of the growth rates for (a2, a3) on a relatively
coarse mesh. This first computation suffices to indicate that there is a restricted
region including the spherically symmetric configuration in which the orbits appear
to remain stable. However, even this region – roughly 0.75 < a2 6 1, 1 6 a3 < 1.2 – is
not entirely stable.

In order to resolve the stability of the orbits in the small region about the spherically
symmetric configuration, we refine our computations in this limited parameter regime.
The results of these computations are shown in figure 5. The coarse structures seen
in figure 4 now become well resolved into filaments of instability that striate this
small region. Growth rates in the broader filaments are on the order of 10−3, while
in the finer filaments they shrink by orders of magnitude. Further refinements of
the computational mesh in smaller regions of the parameter space produce further
resolution of these filaments. We have by no means found all possible filaments of
instability in our computations. The limiting values of reported growth rates gi are
chosen to be orders of magnitude higher than the error inherent in the numerical
method. It is possible to set higher error tolerances for the integration and thus
produce still finer filaments of instability.

Computations for θ > π/4 (the orbit in the m1m2m3-space encloses the east pole),
specifically θ = 0.81, indicate that there are no significant changes in the stability
characteristics of a large oscillation orbit on the other side of the separatrix solution.
Once again the parameter regime away from spherical symmetry refers to unstable
orbits, and there are fine filaments of instability that striate the primarily stable regime
close to spherical symmetry.

3.3. The filamentary structures

The filamentary structures can be understood qualitatively and related to those
occurring in other conservative, dynamical problems. The periodic orbits passing near
the unstable equilibrium solution remain close, in the (m1m2m3)-space, to separatrix
orbits heteroclinic to the unstable equilibrium points, their periods increasing without
bound as they approach the separatrix. In a system with several degrees of freedom,
there are other periods of motion associated with other degrees of freedom and,
near the equilibrium point, these have bounded periods. The periods of the near-
separatrix orbits must therefore pass through multiples of the latter as the separatrix
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Figure 4. We fix θ = (π/4)− so that the unperturbed periodic orbit executes large oscillations,
rotating about the x3-axis. With a relatively coarse mesh in (a2, a3), we find a restricted parameter
regime close to the spherically symmetric configuration that has regions of stability. (a) Contours
of log(gi), for perturbations represented by quadratic polynomials, and (b) for cubic polynomials.

is approached, resulting in successive resonances that may mark the edges of bands of
instability. This mechanism has been verified in some simple classes of Hamiltonian
systems of two degrees of freedom by Churchill, Pecelli & Rod (1980).

To explore this numerically, we fix the semi-axes values of the domain, and take
θ → π/4 (recall that θ = π/4 represents the separatrix). Figure 6 shows the resultant
growth rates as a function of orbital period. Only three bands are resolved in our
calculations as longer periods take a very long time to compute and shorter periods,
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Figure 5. Refined computations in the parameter regime close to a spherically symmetric domain.
The apparent island structures of the instabilities are filaments that are under-resolved by the
current computational mesh. (a) Instability to perturbations represented by quadratic polynomials,
and (b) for perturbations represented by cubic polynomials.

which occur farther from the separatrix, are no longer in the asymptotic regime
where these bands are predicted (in order to capture these bands, we have taken
θ within 10−7 of π/4). Among the features of the resonance mechanism explained
above is that the distance between instability bands, as well as their widths, should be
approximately constant when measured in terms of the periods of the near-separatrix
orbits. Our computations are seen to be consistent with this mechanism. They further
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Figure 6. Growth rate as a function orbital period. Three unstable bands are resolved and a T−1

curve is plotted with arbitrary amplitude for comparison. For T = 400, the initial condition of the
orbit is less than 10−7 away from the separatrix.

indicate that the maximum growth rate decays as T−1, implying constancy of the
eigenvalues of M (see equation (3.1)).

4. Discussion
We address two issues in this section: (i) our conclusions regarding the elliptic

instability and their physical implications and (ii) the relation of the present work to
that of Kerswell (1993), and conclude with a brief summary.

4.1. The elliptic instability

Consider first the case when the periodic solutions of the Euler equations described
by equations (1.2) and (1.3) result from a perturbation of steady flow about the in-
termediate axis. These can represent the long-term outcome of the elliptic instability
only for a relatively small range of axes values including figures not very highly
distorted from the spherical. For axes values outside this range, the relevant peri-
odic solutions are unstable. Even within this range there are narrow subregions of
instability, represented by the filamentary structures in figures 4 and 5. Likewise, for
the other parametric domains considered, the near-sphere region remains stable, but
much of the remaining parameter space corresponds to unstable periodic solutions.
Consideration of perturbations of smaller spatial scale than those considered in this
paper can only have the effect of further constricting this region of stability. It may
be that all such periodic solutions are unstable. However, there are caveats.

The near-sphere parameter domain represents a region of parameter space where
instability of the periodic solutions has not been established (cf. figures 7(a) and
7(b) below). The investigation of Forster & Craik (1996) relates to the instability
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of the periodic solutions governed by equations (1.2) and (1.3) to perturbations of
asymptotically small spatial scale, but excludes the near-sphere region of parameter
space. Even for the filamentary regions of instability seen in figures 4 and 5, the
associated growth rates are small, so the corresponding orbits could persist for a long
time despite a formal conclusion of instability. The near-sphere region is of special
interest in natural settings such as those of planets, stars and galaxies. In their related
study of the stability of the Riemann ellipsoids, Lebovitz & Lifschitz (1996) found
this region of parameter space to be stable to perturbations both of large to moderate
spatial scale and of asymptotically small spatial scale. For these reasons, it may be
premature to disregard these simple flows as physically irrelevant.

Our test of the robustness of the conclusions of the elliptic-instability theory
consisted in considering the stability of periodic solutions differing very little from
steady solutions. In two of the four cases considered, the pattern of stability and
instability of the steady solutions was essentially inherited by the nearby periodic
solutions, with only a small augmentation in the parameter space corresponding to
instability. In the remaining cases, however, the small change in the unperturbed
solution resulted in a large augmentation in the region of instability. We tentatively
conclude that the elliptic-instability theory underestimates the amount of parameter
space in which these simple flows are unstable, since a small imperfection in the
initial data (leading to a periodic rather than a steady unperturbed flow) increases
the possibilities for instability.

4.2. Relation to the Poincaré solutions

There is a similarity between the flows considered here and those found by Poincaré
(1910) as models for a precessing liquid planet. The stability of the latter has been
considered by Kerswell (1993). There are equally important differences as well, and
we address both the similarities and the differences here.

Poincaré’s solution refers to a steady flow in a uniformly rotating reference frame
in which the figure is a spheroid. In general the periodic solutions considered in
this paper cannot be reduced to steady flow in a uniformly rotating frame, but
there are exceptions: if the figure is a spheroid (a2 = a1, a3 arbitrary), then such a
reduction is possible. Moreover, this is an important limiting case for our analysis.
When a2 = a1 = 1, the solution of the system (1.3) is

m1 = A cos (Ωt+ α), m2 = A sin(Ωt+ α), m3 = ζ, (4.1)

where A, α, ζ are constants of integration and Ω =
(
1− a2

3

)
ζ/2. The corresponding

velocity field, obtained from equation (1.2) is

u =

 0 −ζ A sin(Ωt+ α)/a3

ζ 0 −A cos (Ωt+ α)/a3

−a3A sin(Ωt+ α) a3 0

 x. (4.2)

This is expressed in Cartesian coordinates in the inertial frame. Define R(t) to be
the rotation matrix about the ẑ-axis through the angle Ωt + α. The angular velocity
matrix Ω̃ has only one independent component and the angular-velocity vector is
Ω = Ωẑ. Under the rotation x = R(t)y the velocity v relative to the rotating frame is
related to the velocity u relative to the inertial frame by u = R(v + Ω̃y) = MRy, or

v = (R tMR − Ω̃)y ≡ Ly, (4.3)
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where

L =

 0 −(ζ − Ω) 0

ζ − Ω 0 −A/a3

0 a3A 0

 . (4.4)

The linearized equation (2.4) takes the form, in the rotating frame,

vt + 2Ω̃v + ((Lx) · ∇)v + Lv = −∇p, (4.5)

where v, p now represent perturbations.
By contrast, Poincaré’s solution for the simple flow of liquid inside a spheroid

whose boundary is forced to precess about the vertical axis may be written, in the
precessing frame, v0 = Ax where (Kerswell (1993))

A =

 0 −1 0

1 0 −(1 + η)µ

0 µ 0

 . (4.6)

Here µ and η are parameters. The corresponding linearized equation is

vt + 2Ω̂v + ((Ax) · ∇)v + Av = −∇p, (4.7)

where Ω̂ is the angular-velocity matrix in the precessing frame. The formal analogy
is obvious. Indeed, the matrix L of equation (4.4) can be made to coincide with the
matrix A by appropriate choice of scaling: measure time in the unit (ζ − ω)−1, let
a2

3 = 1/(1 + η) (which is the same as in Kerswell’s paper) and let

µ =
2
√

1 + η

2 + η

A

ζ
=

2
√

1 + η

2 + η

√
m2

1 + m2
2

ζ
(4.8)

(which is different). The angular-velocity matrix for the precessing boundary flow has
two independent components and the angular-velocity vector (in the precessing frame)
does not lie along the ẑ-axis of the container, or any principal axis for that matter.
As a result, even in the limiting case when the figures become axially symmetric, the
problem treated in the present paper is different from that of Kerswell (1993).

Kerswell shows that any such flow possesses two kinds of strain (his equation (1.1)
is particularly transparent on this point). One is an elliptic strain due to the tilting of
the plane of the fluid motion, and the other is due to a vertical shearing of the line of
centres of the elliptical streamlines. Each of these separately can produce parametric
instabilities, with different selection rules. These rules are usually described in terms of
cylindrical coordinates, in which eigenfunctions of the unperturbed problem (µ = 0)
contain the factor eimϕ, where ϕ is the azimuthal angle and m is an integer. In order for
the elliptic instability, due to strain in the plane of motion, to arise from a resonance
of two normal modes occurring in the limiting, axisymmetric problem, the m-values
of the normal modes must differ by 2 (cf. Gledzer & Ponomarev 1992). In order
for the instability due to strain perpendicular to the plane of motion to arise from
a resonance of two normal modes occurring in the limit µ = 0, the m-values of the
normal modes must differ by 1. Note that these selection rules are necessary but not
sufficient for these instabilities to occur at leading order in perturbation theory.

In figure 3, which shows that the elliptic instabilities are joined by further regions
of instability, these further regions of instability can be related explicitly to the
vertical shearing discussed by Kerswell. Consider in particular figure 3(c). The axially
symmetric family is given here by a3 = 1 so the roles of a2 and a3 are reversed in
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comparison with the description above. The narrow region of instability intersects
the line a3 = 1 in a band centred (approximately) at a2 = 0.35. For the unperturbed
flow determined by the matrix L, µ is small when (cf. equation (4.8)) the initial data
represent a small departure from steady motion about the x2-axis. This is exactly
the situation to which figure 3(c) applies. Kerswell’s analysis for small µ shows that
the resonances with ∆m = 1 are the candidates for instability. We have calculated
frequencies for uniformly rotating spheroids under quadratic perturbations and find a
resonance at a2 = 0.35846 of modes for which m = 1 and m = 2. Since the calculation
leading to figure 3(c) was done with a numerical value of µ which is small but not
zero, the point 0.35846 (at µ = 0) has broadened to a band. An understanding of the
top unstable region appearing in figure 2(c) is obtained similarly. Again, at µ = 0 we
find that there is a resonance of m = 1 and m = 2 modes at a3 = 2.13896 (note a3

and a2 have again reversed roles, so a2 = 1). There is also a resonance of m = 0 with
m = 2 for a prolate spheroid with a3 = 2.600. Together, these two latter resonances
account for the two unstable regions at the top of figure 2(c). Thus the analysis of
Kerswell (1993) provides a qualitative understanding of the additional instabilities
encountered in the present problem.

4.3. Summary

We have identified four different types of instability of our exact time-dependent ideal
flow in ellipsoidal domains. When the underlying flow executes small oscillations
about an equilibrium:

(a) there are instabilities reflecting the elliptic instability of the steady equilibria
and due to the elliptical shape of the boundary cross-section;

(b) there is a further elliptical instability that occurs even if the boundary is axially
symmetric due to the tilt of the vorticity vector (since the tilted planes on a spheroid
intersect the boundary in ellipses);

(c) there are shearing instabilities (the streamlines are sheared normal to the flow
direction); along with (b) these are analogous to instabilities of a precessing spheroid
which were thoroughly investigated by Kerswell (1993).

Finally, when the underlying flow executes long-period, near separatrix oscillations:
(d) much of the parameter plane away from spherical symmetry is unstable. The

wedges which occurred for small oscillations have widened to fill most of the space.
Moreover, even the apparently stable parameter regions are interlaced with resonance
filaments characteristic of near-separatrix periodic orbits.

Figures 2, 3 and 4 were based on an ordering of the semi-axes (equation (2.1))
fixing their relative sizes. This then requires imagining motions near each of the
three coordinate axes in these three figures. This is convenient computationally, but
makes the connections among the figures less than transparent. Figures 7(a) and
7(b) represent the calculations in a unified fashion. In these figures, all periodic
orbits considered pass very close to the x3-axis, but the semi-axes are no longer
ordered in a fixed way, but are determined from the figure. The case when the
equilibrium solution is about the intermediate axis (figures 4 and 5 above) is now
represented by the region between the horizontal axis and the line a3/a1 = a2/a1.
If these diagrams are overlaid on each other it is seen that for extreme shapes the
near-equilibrium periodic orbits are mostly unstable, but in a neighbourhood of the
origin, which represents a sphere, is there a significant region of stability. The points
of instability in this near-sphere region are located between the abscissa and the 45◦
line a3 = a2 and represent the filamentary regions better seen in figure 5; the growth
rates of these instabilities are quite small. The cross represents the ellipsoid with
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Figure 7. Unified diagram of growth rates (stable and unstable regions of parameter space) for (a)
quadratic perturbations and (b) cubic perturbations. Initializing the vorticity primarily along the
a3-axis and varying a3 and a2 gives a full sampling of the oblate, prolate and near-separatrix cases
discussed in the text. All orbits have been initialized with the same energy, providing initial data
very close, but not identical to, those of figures 2–5. The parameters considered by Forster & Craik
(1996) are denoted by a cross.

axes (a1, a2, a3) = (3, 2, 1) investigated by Forster & Craik (1996). Their investigation,
which included but was not restricted to near-equilibrium orbits, led to a conclusion
of instability for perturbations of asymptotically small spatial scale.
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